
6DQGLD�LV�D�PXOWLSURJUDP�ODERUDWRU\�RSHUDWHG�E\�6DQGLD�&RUSRUDWLRQ��D
/RFNKHHG�0DUWLQ�FRPSDQ\��IRU�WKH�8QLWHG�6WDWHV�'HSDUWPHQW�RI�(QHUJ\
XQGHU�FRQWUDFW�'(�$&�����$/������

The Current State of Telemedicine
Under normal circumstances, medical care relies on
face-to-face encounters between patients and
caregivers. In those cases when face-to-face
encounters are not possible, caregivers have relied on
telemedicine to link patients to remotely located
caregivers or to link caregivers collocated with the
patients to remotely located specialists.

Historically, telemedicine-based healthcare focused
on videoconferencing as the primary means of
linking parties in the telemedicine visit. In recent
years, systems based on computers that support a
range of medical devices have become more
common. The result has been the use of telemedicine
to support a broader range of approaches to care
delivery.

Even so, telemedicine has yet to reach its full
potential. As an industry, a number of key technical
barriers must be overcome before telemedicine fully
matures. Among these barriers are the lack of device
interoperability standards, the high cost of
telemedicine equipment, inadequate clinical
capabilities, and the lack of an adequate supporting
infrastructure, including security mechanisms. Of
these, the need to establish device interoperability
standards is central. Once this barrier is eliminated,
the others are more readily addressed.

Sandia’s Telemedicine Activities
Sandia first became involved in telemedicine in 1995,
when it hosted a "prosperity game" focused on the
question of how technology might be used to reduce
the cost of healthcare. This event, which brought
together leaders from all parts of the healthcare
community, identified nine key areas in which it was

felt that technology could significantly impact the
cost of healthcare delivery (see
http://www.tatrc.org/pages/downloads/role-tech.pdf).
One of those areas was telemedicine. For each of the
nine areas, the experts identified specific barriers to
be overcome and identified specific goals to pursue
in order to eliminate these barriers.

When the results of the workshop were compiled,
information surety emerged as one of the key barriers
that needed to be addressed. For this reason, in 1997,
Sandia was funded to investigate and develop
mechanisms for improving information security for
telemedicine systems. Initial consideration was given
to addressing surety issues for existing telemedicine
system technologies; however, after surveying the
telemedicine and medical informatics areas, Sandia
concluded that the benefits of doing this would be
limited. It was clear that the trends in technology –
particularly increasingly available bandwidth, plug-
and-play hardware, pervasive computing, and
distributed software design – would change
telemedicine and any solutions formulated for
existing telemedicine system architectures would
quickly become obsolete. Given this, it was decided
that the telemedicine community would be better
served if Sandia addressed the surety issues
associated with the next generation of telemedicine
system design.

When Sandia began reviewing work that had been
done in telemedicine and medical informatics that
supported these technology trends, a few activities
stood out. These included the IEEE Medical
Information Bus, HL7, and the work being done in
CORBAMed and in the Andover Working Group.
Unfortunately, no overarching telemedicine system
architecture efforts to address both hardware and

A Telemedicine
Reference Architecture

Enabling the Next Generation
of Telemedicine Devices

A Telemedicine Reference Architecture

2

software interoperability issues were found. For this
reason, Sandia began the development of its
“Telemedicine Reference Architecture” to show how
leading edge information technology trends were
likely to influence the design of the next generation
of telemedicine systems.

Given this architecture, Sandia could then identify
the security issues associated with this kind of system
design and could provide the mechanisms needed to
secure this design. As envisioned, the Telemedicine
Reference Architecture is a secure, object-oriented
information architecture for telemedicine systems
that promotes plug-and-play interaction between
system components through standardized interfaces,
communication protocols, messaging formats, and
data definitions. In this architecture, each component
functions independently, and components plug
together in a “lego-like” fashion to achieve the
desired device or system functionality. At the same
time, this work is not intended to be a reinvention of
the wheel so, to the degree possible, the architecture
seeks to support various ongoing standards efforts in
the medical device and the medical informatics arena.

The Future of Telemedicine
Unlike the closed telemedicine systems of today that
rely on monolithic, point-to-point designs (Figure 1),
the Reference Architecture assumes that tomorrow’s
systems will be open and will be based on highly
distributed components capable of plug-and-play
operation. In these future systems, dedicated-purpose

Figure 1. Typical Monolithic System Design

telemedicine units will be replaced with medical
“peripherals” that integrate on an as-needed basis
with general system resources (displays, processors,
data storage, etc.) that are also available to other non-
clinical applications in both the home and in other
settings (Figure 2).

When coupled with likely policy changes permitting
reimbursement for telemedicine-based delivery of
care and establishing national licensing of caregivers,
the technical changes coming to telemedicine
promise to radically alter the way in which medicine

:LUHOHVV�³+XE´
ZLWK�%XLOW�LQ
3URFHVVLQJ

3,&�5HDGHU
ZLWK�:LUHOHVV
&RPPXQLFDWLRQV

+HDGVHW�DQG
0LFURSKRQH�ZLWK
9RLFH�&RQWURO

3RUWDEOH�'LVSOD\
ZLWK�%XLOW�LQ
3URFHVVLQJ

,QWHOOLJHQW�
0HGLFDO
,QVWUXPHQWV
ZLWK�:LUHOHVV
&RPPXQLFDWLRQV

3ODWRRQ�/HYHO
&RPSXWLQJ�ZLWK
0HGLFDO�,QWHOOLJHQFH
DQG�:LGH�DUHD
&RPPXQLFDWLRQV
*DWHZD\

Figure 2. Sample Distributed System Design

is practiced. Rather than being relegated to a few
specialized care delivery settings, telemedicine has
the potential to move to center stage, becoming the
de facto method of practicing medicine in many
future care delivery settings.

An Overview of the Architecture
In defining a reference architecture for telemedicine,
Sandia partitioned the functionality found in current
systems into seven service areas (Figure 3). Each
service area represents specific types of elements
(components or building blocks) from which
telemedicine systems can be composed. These
elements may be hardware, software, or both. In
developing the architecture, Sandia is working to
define the interfaces between each of the outer six
service areas and the “Backplane” – that collection of
hardware and software building blocks within a
telemedicine device that allow the various elements
within a telemedicine device to interact with one
another. When connected together, either directly
(i.e., physically) or by a network, the elements are
able to advertise their services to each other and to
confederate in order to fulfill a clinical task.

0HGLFDO
'HYLFHV

0HGLFDO
'HYLFHV

3DWLHQW
5HFRUGV

3DWLHQW
5HFRUGV

8VHU
,QWHUIDFH

8VHU
,QWHUIDFH

%DFNSODQH%DFNSODQH

&RPPXQLFDWLRQV&RPPXQLFDWLRQV

3URWRFROV3URWRFROV

3URFHVVLQJ3URFHVVLQJ

Figure 3. Architecture Service Areas

A Telemedicine Reference Architecture

3

The key idea behind this architectural approach is
that, if the identified interfaces are standardized and
the mechanisms needed to support plug-and-play and
distributed operation are built into system elements,
then it becomes possible to create a range of
telemedicine devices from a common set of building
blocks. For example, a stand-alone heart rate
monitor might consist of a sensor, a dedicated LCD
display and few buttons, and the circuitry required to
connect the transducer to the interface mechanisms
(Figure 4).

0HGLFDO
'HYLFHV

0HGLFDO
'HYLFHV

8VHU
,QWHUIDFH

8VHU
,QWHUIDFH

%DFNSODQH%DFNSODQH

Figure 4. Heart Rate Monitor

The same clinical capability could be rendered in a
network-aware fashion by cleaving the interface
mechanisms from the monitor and replacing them
with a shared interface device (e.g., the “TV” in the
future home). The clinical device would be
connected to the interface mechanisms by means of a
local network (Figure 5).

%DFNSODQH%DFNSODQH%DFNSODQH%DFNSODQH

&RPPXQLFDWLRQV&RPPXQLFDWLRQV &RPPXQLFDWLRQV&RPPXQLFDWLRQV

0HGLFDO
'HYLFHV

0HGLFDO
'HYLFHV

8VHU
,QWHUIDFH

8VHU
,QWHUIDFH

Figure 5. A Distributed Heart Rate Monitor

Taking this step lays the necessary foundation for
telemedicine-based care. While both the heart rate
monitor and the TV-based interface to the monitor
might reside in the home and be used by a patient for
self-monitoring only, nothing prevents these devices
from being dispersed geographically. For example,
the monitor might be located in the patient’s home
while the interface mechanisms are located at the
doctor’s office. In addition, this approach to system
design makes it possible for the clinical device to be
monitored by any number of interface devices,
thereby allowing the patient to interact with a variety
of different caregivers. This approach to system
design also allows the specific resources used to
constitute a particular telemedicine capability to
change from session to session, depending on the
nature of the clinical procedures to be performed and
on the immediate availability of particular required
resources. It is this distributed web-like model of

Home Pediatrician’s
Office

Doctor’s
Office

Record Archival
Company Used by

Doctor

BP
Cuff

Otoscope

Opthalomoscope Stethoscope

Thermometer
Desktop
Terminal

Handheld
Terminal

Internet
Gateway

LAN

Internet

Diagnostic
Server

Desktop
Terminal

Internet
Gateway

LAN

Record
Server

Exam Room
Wall Terminal

Internet
Gateway

LAN

Record
Server

Internet
Gateway

LAN

Record Archival
Company Used by

Family

Record
Server

Internet
Gateway

LAN

Figure 6. A Web-like Care Delivery System

A Telemedicine Reference Architecture

4

healthcare interactions in which “clients” and
“servers” dynamically confederate for a period of
time and then disassociate from one another that will
transform telemedicine into the basis for future
approaches to healthcare delivery (Figure 6).

The Seven Service Areas
As mentioned earlier, the Reference Architecture
divides telemedicine system functionality into seven
service areas (Figure 3).

The User Interface represents hardware and/or
software with which the user interacts when
accessing the system. These mechanisms support
interaction with services in the other Service Areas
such as the Patient Records or Medical Devices. As
an example, a sphygmomanometer might include two
text display controls that present the blood pressure
reading, a text display control to indicate operating
instructions, and one or more pushbutton controls to
start, stop, and calibrate the instrument. These
controls would instruct the user and then respond to
user actions by sending messages to other
telemedicine services to carry out the intent of the
user. While the application level interface to the set
of User Interface controls would be standard, the
mechanisms that implement those controls could vary
greatly.

Medical Devices represents mechanisms for
acquiring patient data, delivering therapy to a patient,
or analyzing specimens collected from a patient.
Medical devices are either monolithic (e.g. a
standalone smart physical device) or partitioned into
two layers. The first layer is the physical device; the
second layer is a software “proxy” that represents the
device in another piece of hardware. In either case
the device presents an established interface that
“wraps” the components actually used to provide the
functionality. In addition, the technologies used to
deliver the requested services may be transparent
(e.g., whether blood pressure reading is obtained
using a cuff or an intra-arterial catheter).

Patient Records presents application-level interfaces
for storing and retrieving patient-encounter data.
This includes the capability to determine whose
patient records are stored on a particular device,
where records are stored for a particular patient, and
how the sets of data can be accessed. As before, the
delivery mechanism (e.g., an object database,
relational database, or text file) can be transparent to
the other components in the system. Similarly, the
storage mechanism (e.g., disk drive or smart card)
can be transparent to the components that read and
write data to these media.

The Processing Service Area consists of specialized
routines to manipulate data. Examples of this include
statistical routines to analyze trends in data sets,
filtering routines to manipulate waveforms and
images, and “intelligent agents” that aid in diagnosis
and care planning. A typical processing component
will be implemented as a simple software module
that advertises its capabilities. Some will be
dedicated-function, hardware devices that present
standard component interfaces to the rest of the
system (e.g., a device dedicated to high-throughput
ultrasound image processing that accepts a digital
data stream and outputs processed images into a
patient record).

The Communications Service Area represents those
mechanisms that a telemedicine device uses to
communicate with other devices and the services that
support these communications. The abstract model
used by this Service Area separates the application-
level services (allocation of bandwidth, directory
facilities) from the device-level mechanisms that
actually move bits. Communications components
provide single interfaces requesting that channels of a
certain type (e.g., an Internet protocol link) be
allocated. How these connections are created, what
these channels look like, and the transport medium
(e.g., telephone or satellite) are hidden from the rest
of the system.

The Protocols Service Area constitutes the brain of a
telemedicine device. The “programs” or “scripts” in
this Service Area accomplish specific medical
objectives by utilizing resources acquired from the
other services. A simple protocol might, for example,
direct a medical instrument to take a reading, tell the
patient record to store the reading, and tell the user
interface to display the reading. Protocols can deliver
sophisticated functionality through command nesting.

Finally, the Backplane represents mechanisms that
tie the other six areas together. It provides intra-
service communications, as well as profile
information needed for device “self-awareness.” This
self-awareness is essential to creating devices that
work with one another in a plug-and-play fashion.
This area includes the “middleware” that allows
distributed processing (e.g. CORBA, DCOM, RMI)
as well as the associated system services (i.e.,
Naming Service, Trader Service, Security Service,
etc.).

Components
One way to understand the Reference Architecture is
to think of each of the service areas as consisting of
collections of components. Each such component is a

A Telemedicine Reference Architecture

5

“black box” that embodies some collection of data
and/or some set of functionality. Interfaces on these
boxes serve as data inputs and outputs. Assuming
that they are of the same type (i.e., the kinds of data
that they carry match), output interfaces of
components can be attached to the input interfaces of
other components to form a network of capabilities
that can perform a particular clinical function, as
shown in Figure 7. In this “virtual device”, the pulse-
oximeter (SpO2) user interface component provides
the commands that start and stop the operation of the
pulse-oximeter medical device component. The

3XOVH�2[LPHWHU
0HGLFDO�'HYLFH

3XOVH�2[LPHWHU
0HGLFDO�'HYLFH

:DYHIRUP
6WDWLVWLFV
3URFHVVLQJ

:DYHIRUP
6WDWLVWLFV
3URFHVVLQJ

3XOVH�2[LPHWHU
8VHU�,QWHUIDFH

3XOVH�2[LPHWHU
8VHU�,QWHUIDFH

6WDUW���6WRS

6S2��:DYHIRUP6S2��6WDWLVWLFV

Figure 7. Interconnected Components

continuous waveform output of the SpO2 medical
device component feeds the input of a waveform
statistics processing component that extracts the high,
low, and mean oxygen saturation readings for a given
time interval. The output of this processing block
drives the display input of the SpO2 user interface
component, which outputs the oxygen saturation
readings to the virtual device’s user. While the
connections of outputs to inputs in this example are
“one to one”, the Reference Architecture also allows
“one to many” connections (i.e., the output of a given
component can simultaneously feed the inputs of
several different components) as well as “many to
one” (i.e., a given component’s input interface is
connected to the output interfaces of more than one
component).

Virtual Devices
In the Reference Architecture, the term used to
describe a collection of components that have been
interconnected for a specific clinical purpose is
“virtual device”. The composition of a Virtual
Device follows a design pattern known as Model-
View-Control (MVC). This pattern separates the
construction of software functionality into three
pieces to provide a more versatile system. In this
design pattern the Model provides a simple standard
interface to a device, the Control performs the logic
of the functionality, and the View presents control
and data to a user.

The Model is responsible for interfacing a physical or
logical entity to the remainder of the system. For
example, a blood pressure Model is responsible for
communicating directly with the physical blood
pressure cuff. In another case, a database Model is
responsible for communicating with a database
server. A Model hides the actual interface to a device
from the rest of the system by providing a
standardized interface.

A Control is responsible for implementing logic and
manipulating data that is accessed from the
associated Model. Controls provide a higher level
interface than the Model.

Views are the mechanism an operator uses to
interface with a Virtual Device. The View may
communicate with multiple Controls and present the
data in the form of a complex device.

Following this separation a Model needs only limited
processing to interface with the physical device. This
is desired so that the Model software can be pushed
down to run on the physical device. As an
alternative, the Model software can run on a host
serving as a proxy for the device. In this case, the
physical device communicates with the Model
through a data connection such as USB. Likewise,
the View implements only the processing necessary
to display information to a user. This allows display
devices with limited capabilities (e.g. handheld
computers) to function as the user interface.
Complex processing takes place in the Control. The
Control is configured within a system to run on a host
capable of supporting its needs. A very simple
Virtual Device may not require a Control, i.e. the
View would connect directly to the Model, as in
Figure 7.

Relating this back to the Service Areas, a given
component within a Service Area might fulfill the
role of Model, View, or Control. Typically a
Medical Device or Patient Record might have a
component that is a Model. A Processing component
would probably be a Control. The User Interface
Service Area would have View Components.

An example of a Vital Signs Virtual Device is shown
in Figure 8. In this case, a Universal Serial Bus
(USB) is used to communicate between actual
physical devices and the Model for these devices.
The Model communicates with the Control, which in
turn communicates with the View. The View is
responsible for the display of data for the device on
the Desktop. Underlying distributed processing of

A Telemedicine Reference Architecture

6

7HPS

6S2�

3K\VLFDO
'HYLFHV

'LVWULEXWHG�3URFHVVLQJ
³0LGGOHZDUH´

0LGGOHZDUH�6HUYLFHV�
�6HFXULW\��1DPLQJ�

7UDGHU��7UDQVDFWLRQV�����

'LVWULEXWHG�3URFHVVLQJ
³0LGGOHZDUH´

0LGGOHZDUH�6HUYLFHV�
�6HFXULW\��1DPLQJ�

7UDGHU��7UDQVDFWLRQV�����

86%

%DFNSODQH

%3

9,7$/6

SXOVH
%3

6S2�

%3

���
��

8VHU�,QWHUIDFH

9LUWXDO�'HYLFH

6\VWHP�,�)6\VWHP�,�) 'LVSOD\

02'(/ 9,(:&21752/

/RJLF

Figure 8. Example of a Vital Signs Virtual Device

the Backplane is used for communication between
the Model, Control, and View.

Protocols
As described so far, each of the Service Areas
contains a set of components that can be used in the
construction of a Virtual Device. As needed, these
components are selected for use, connected together
to form the desired device, utilized as part of the
device, and then released back into the Service Areas
from which they were taken (so that they can then be
used to form other Virtual Devices). What has not
been addressed is the question of where the
intelligence resides that specifies which components
need to be acquired, how these components need to
be interconnected, and when these components
should be released back into their respective Service
Areas. This is the role of Protocol components.

Beyond these basic requirements of knowing how to
acquire and interconnect components, Protocol
components also embody some degree of
understanding regarding allowable tradeoffs that can
be pursued when the optimal set of resources
required by the Protocol are not available. For
example, if a given Protocol requires a dedicated 5
megabit per second communication channel but the
maximum capacity currently available is 56 kilobits
per second, the Protocol will (if clinically
appropriate) suggest an alternative. For instance, it

may be acceptable to archive the data generated by
the clinical procedure being executed and then, after
the fact, to trickle the data over the channel to the
intended recipient.

Since Protocol components are themselves regular
components, they can themselves be part of a Virtual
Device that is assembled by a higher level Protocol.
For example, one way of constructing a Vital Signs
Virtual Device is to create a Protocol that acquires
Protocol components for each of the individual
medical devices needed in the Vital Signs device.

Plug-and-Play Operation
From a clinical perspective, one of the most
important aspects of the Telemedicine Reference
Architecture is the incorporation of plug-and-play
capabilities into telemedicine systems. In most
current designs, the physical components that make
up that system are tightly coupled to one another.
Adding a new physical component to a telemedicine
device (e.g., adding an EKG to an existing system) or
replacing an existing device with another (e.g.,
replacing the computer monitor and keyboard with a
PDA) usually cannot be done without the expenditure
of significant amounts of time and money.

To address this issue, the Reference Architecture
advocates the use of standard physical connectors
(such as USB or FireWire) along with giving devices

A Telemedicine Reference Architecture

7

the ability to describe themselves to any system to
which they may be added. Figure 9 is a notional
view of the latter aspect of plug-and-play in the
Reference Architecture. Using this sort of approach,
a number of different types of physical devices can
be dynamically added and removed from a system as
needed to meet changing clinical requirements.

Telemedicine System
Component

Device
Specifications

Procedures

The Rest
of The

Telemedicine
System

“I am here!”

“Identify yourself”

“I am a pulse
oximeter that ...”

“Start Waveform”

“235, 233, 230,...”

Figure 9. Self-Identification in Plug-and-Play

Component Characteristics
Components within the Architecture follow a set of
rules for creation, activation, deactivation, connection
to other components, and destruction. A component’s
standard behavior will be based upon a standard
design pattern, which is extended by the component.
The Component Model is described by the terms
Containment, Lifecycle, Communication, Resource
Control, Component Assembly, Fault Tolerance, and
Repository. The intent of the model is to be
implementation neutral so that it can be implemented
using different technologies. At first glance, the
Component Model is fairly complex; however, once
developed much of the code can be reused and
adapted to create new components.

Containment – A component can be dynamically
added or removed from a system. As such, the
system must provide a consistent framework that
contains the component. Once the component is
added to the system, it can be instantiated and used.

Lifecycle – A component has a lifecycle within the
system. The component is first installed which
implies the software required by the component has
been loaded on the host. The component is then
plugged in which adds the component to the system
container. The plugged-in state of a component is
maintained when the power is cycled to the host. The
component is then placed on-line which allows other
components to access it. The component may be
cycled between on-line and off-line while the
component is plugged in. When the component is
off-line it may be unplugged and then uninstalled.

Communication – A component needs a dynamic
way of communicating with other components. One
useful mechanism is a design pattern called the
Observer also known as Publish-Subscribe [Gamma
95]. This approach is described in terms of an
Observer and Subject, as it is used for Java Beans
events. The Observer has a dynamic reference to a
Subject with which it is intended to operate. The
Observer can directly call methods on the Subject.
The Observer passes to the Subject a reference to a
well-known interface used to listen for events. The
Subject maintains “properties” that describe the
internal data and state kept within the component.
When a property changes, the Subject publishes an
event to the Observer. Multiple Observers can
register to receive events from a single Subject.
However, only one Observer must be in control of a
Subject at a time (see Resource Control).

Resource Control – Since all components are
independent entities a mechanism is needed to
establish ownership of a component that controls a
resource. This prevents two components from
"fighting" over a third that both want to control. A
simple way to provide this is to use a locking
mechanism. A client component must acquire a lock
from a server component before the server can be
used. The client maintains control of the component
as long as it holds the lock. The server component
allows only the holder of the lock to call control-type
methods (e.g., a blood pressure Model would have a
start method that could only executed by the holder
of the lock).

Component Assembly – Components must be
assembled to create the actual system for an
application. Components can be “hand” assembled,
i.e., hard-wired together, or dynamically assembled
using a tool. A useful tool for this is one of the “bean
box” tools created to work with Java Beans. Java
Beans implicitly are not distributed, i.e., they are
typically used within a single process on a host.
However, Java Beans can be extended for use in
distributed processing by creating Java Beans that are
“network” capable (e.g., a Java Bean would
implement a CORBA client for a CORBA based
system).

Fault Tolerance – A distributed software system
design must assume the network will fail. In
response, the system must degrade in a positive
manner. Either of two basic mechanisms may be
used to address this. The first is that communication
connections time out when a method call is made and
no response is received within a specified time.
When this occurs the client takes an appropriate

A Telemedicine Reference Architecture

8

action such as retry, goes to alternate resources,
removes the reference to the server, or alerts the
operator. Another approach is to require that a client
maintain a lease with a server. The lease
automatically times out if the client does not renew
the lease. When the lease times out the server knows
that the client is no longer interested or has failed.

Repository – A successful component framework
requires a repository where users desiring to build a
system can discover and retrieve existing
components. Component developers use the
repository to store new components and make them
available to the community. The repository may in
some cases only provide a description of a
component, along with information on how and
where to get the component itself.

Telemedicine Security
As telemedicine systems move from closed systems
based on proprietary designs and running over
dedicated circuits or phone lines to open systems
based on accepted standards and running over public
networks, the security threats associated with
telemedicine will increase. While healthcare
security’s current emphasis on the confidentiality and
integrity of patient data will continue to be important,
future telemedicine systems will bring with them a
whole range of new security issues. In part, this is
due to the fact that the components of future
telemedicine systems will be Internet devices. As
such, they will inherit many of the security concerns
associated with the Internet. In addition to this,
systems like those described in this paper represent a
new generation of information technology. Whereas
the current generation is characterized by the merging
of large numbers of formerly independent, static
networks of computers into a global Internet, the next
generation will be characterized by pervasive
computing, high performance communications,
mobile devices, and ultra-distributed processing. In
this new world, many of the fundamental
assumptions underlying current approaches to
security no longer hold true. In fact, how to address
many of the security problems of this new generation
of systems is the subject of current leading edge
security research.

As noted at the start of the paper, addressing
telemedicine security concerns is Sandia’s primary
charter in this research project. Given the distributed,
collaborative nature of the Telemedicine Reference
Architecture, Sandia is pursuing a security approach
that does not rely on centralization of control or on
the aggregation of all computing resources behind
tightly controlled “fortress walls”. Because a

primary feature of the Reference Architecture is plug-
and-play devices, a security approach that dictates
the solution is unacceptable. For this reason, Sandia
is exploring approaches that allow security policies
and specific mechanisms to be negotiated among
components within a Virtual Device and among
Virtual Devices within a telemedicine system.

Project Deliverables
Sandia intends to deliver three sets of products out of
this effort. The first product is a collection of
telemedicine devices that demonstrate the secure,
distributed, plug-and-play concepts described in this
paper. These devices are currently planned to be
released in three “builds”. The first build focuses on
plug-and-play of medical instruments, on the
Backplane components found in individual nodes
within the telemedicine system, and on security
issues associated with individual telemedicine
devices. The second build focuses on
telecommunication issues, including dynamic
bandwidth allocation, videoconferencing, and
telecommunications security. The goal of the final
build is to demonstrate the power of the Reference
Architecture by moving the capabilities demonstrated
in the first two builds from personal computers to a
distributed network of general purpose processors
and communication interface devices. This build
also addresses some of the leading edge security
issues associated with ultra-distributed systems.

The second product of this engineering effort is a set
of interoperability specifications that document the
interfaces between the Backplane and each of the
other six service areas. Sandia’s current hopes are to
work with the American Telemedicine Association to
develop a vendor group focused on solidifying and
promoting these specifications as standards for use by
the telemedicine community.

The final product of this effort is a technology
roadmap that identifies barriers to telemedicine’s
success and suggests work that can be done to
remove these barriers. Sandia is currently exploring
the possibility of working with the Army’s
Telemedicine and Advanced Technologies Research
Center and with NASA to coordinate the products of
similar efforts underway in each of the organizations.

For more information about this project, contact
Mike Hightower (505) 844-5499 or Rick Craft (505)
844-8873 at Sandia National Laboratories.

